
Context-Sensitive Demand-Driven Control-Flow
Analysis

Tim Whiting[0000−0003−4016−1071] and Kimball Germane[0000−0003−4903−5645]

Brigham Young University, Provo UT 84601, USA
tim@whitings.org

kimball@cs.byu.edu

Abstract. By decoupling and decomposing control flows, demand control-
flow analysis (CFA) resolves only the flow segments determined necessary
to produce a specified control-flow fact. It therefore presents a more flex-
ible interface and pricing model than typical CFA, making many useful
applications practical. At present, the only realization of demand CFA is
the context-insensitive Demand 0CFA. Typical mechanisms for adding
context sensitivity are not compatible with the demand setting because
the analyzer is dispatched at arbitrary program points in indeterminate
contexts. We overcome this challenge by identifying a context suitable for
a demand analysis and designing a representation thereof that allows it
to model incomplete knowledge of the context. On top of this design, we
construct Demand m-CFA, a context-sensitive demand CFA hierarchy.
With the attractive pricing model of demand analysis and the precision
offered by context sensitivity, we show that Demand m-CFA can replace
its exhaustive counterpart in compiler backends and integrate into inter-
active tools such as language servers.

Keywords: Demand CFA, m-CFA, Context-Sensitivity, Control Flow
Analysis

1 Demand m-CFA Correctness

1.1 Demand ∞-CFA and Demand Evaluation

To show that Demand m-CFA is sound with respect to a standard call-by-value
(CBV) semantics, we consider the limit of the hierarchy, Demand ∞-CFA, in
which context lengths are unbounded. From here, we bridge Demand ∞-CFA
to a CBV semantics with a concrete form of demand analysis called Demand
Evaluation. Our strategy will be to show that the Demand ∞-CFA semantics is
equivalent to Demand Evaluation which itself is sound with respect to a standard
CBV semantics.

Demand Evaluation is defined in terms of relations ⇓de
eval , ⇒de

expr , and ⇓de
call

which are counterpart to ⇓m
eval , ⇒m

expr , and ⇓m
call , respectively. Like their counter-

parts, ⇓de
eval , ⇒de

expr , and ⇓de
call relate configurations to configurations. However,

a Demand Evaluation configuration includes a store σ from addresses n to calls



2 Tim Whiting and Kimball Germane

consisting of a call site and its environment. Demand Evaluation environments,
rather than being a sequence of contexts, are sequences of addresses. Like con-
texts, an address may denote an indeterminate context (i.e. call) which manifests
as an address which is not mapped in the store. Formally, the components of
stores and environments are defined

(s, n), σ ∈ Store = (Addr → Call)×Addr ρ ∈ Env = Addr∗

cc ∈ Call = App × Env n ∈ Addr = N

A store is a pair consisting of a map from addresses to calls and the next address
to use; the initial store is (⊥, 0).

Figure 1 presents the definitions of ⇓de
eval , ⇒de

expr , and ⇓de
call .

⇓de
eval ,⇒de

expr ,⇓de
call ⊆ Cursor × Env × σ × Cursor × Env × σ

⇒de
find ⊆ Var × Cursor × Env × σ × Cursor × Env × σ

Most rules are unchanged from Demand m-CFA modulo the addition of stores.
Instantiation in Demand Evaluation is captured by creating a mapping in the
store. For instance, Demand m-CFA’s App rule “discovers” the caller of the en-
tered call, which effects an instantiation via App-Body-Instantiation. In contrast,
Demand Evaluation’s App rule allocates a fresh address n using fresh, maps it
to the caller in the store, and extends the environment of the body with it. The
fresh metafunction extracts the unused address and returns a store with the next
one. Store extension is simply lifted over the next unused address. Formally, they
are defined as follows.

fresh((s, n)) := (n, (s, n+ 1)) (s, n)[n0 7→ cc] := (s[n0 7→ cc], n)

Unknown-Call applies when the address n is unmapped in the store. It instanti-
ates the environment by mapping n with the discovered caller. Known-Call uses
≡σ to ensure that the known and discovered environments are isomorphic in the
store. The ≡σ relation is defined on addresses and lifted elementwise to envi-
ronments. We have n0 ≡σ n1 iff σ(n0) = ⊥ = σ(n1) or σ(n0) = (C[(e0 e1)], ρ0),
σ(n1) = (C[(e0 e1)], ρ1), and ρ0 ≡σ ρ1. If the environments are isomorphic, then
all instances of the known environment are substituted with the discovered en-
vironment in the store, ensuring that queries in terms of the known are kept up
to date. This rule corresponds directly to the instantiation relation of Demand
m-CFA.

1.2 Demand Evaluation Equivalence

In order to show a correspondence between Demand ∞-CFA and Demand Evalu-
ation, we establish a correspondence between the environments of the former and
the environment–store pairs of the latter, captured by the judgment ρ̂ ρ̂⇔ρ ρ, σ



Context-Sensitive Demand-Driven Control-Flow Analysis 3

Lam

C[λx.e], ρ, σ ⇓de
eval C[λx.e], ρ, σ

Operator

C[([e0] e1)], ρ, σ ⇒de
expr C[(e0 e1)], ρ, σ

Ref
(Cx[ex], ρx) = bind(x,C[x], ρ)

Cx[ex], ρx, σ0 ⇓de
call C

′[(e0 e1)], ρ
′, σ1 C′[(e0 [e1])], ρ

′, σ1 ⇓de
eval Cv[λx.e], ρv, σ2

C[x], ρ, σ0 ⇓de
eval Cv[λx.e], ρv, σ2

App
C[([e0] e1)], ρ, σ0 ⇓de

eval C
′[λx.e], ρ′, σ1

(n, σ2) := fresh(σ1) C′[λx.[e]], n :: ρ′, σ2[n 7→ (C[(e0 e1)], ρ)] ⇓de
eval Cv[λx.ev], ρv, σ3

C[(e0 e1)], ρ, σ0 ⇓de
eval Cv[λx.ev], ρv, σ3

Operand
C[([e0] e1)], ρ, σ0 ⇓de

eval C
′[λx.e], ρ′, σ1

(n, σ2) := fresh(σ1) x,C′[λx.[e]], n :: ρ′, σ2[n 7→ (C[(e0 e1)], ρ)] ⇒de
find Cx[x], ρx, σ3

Cx[x], ρx, σ3 ⇒de
expr C′′[(e2 e3)], ρ

′′, σ4

C[(e0 [e1])], ρ, σ0 ⇒de
expr C′′[(e2 e3)], ρ

′′, σ4

Body
C[λx.[e]], ρ, σ0 ⇓de

call C
′[(e0 e1)], ρ

′, σ1 C′[(e0 e1)], ρ
′, σ1 ⇒de

expr C′′[(e2 e3)], ρ
′′, σ2

C[λx.[e]], ρ, σ0 ⇒de
expr C′′[(e2 e3)], ρ

′′, σ2

Find-Ref

x,C[x], ρ, σ ⇒de
find C[x], ρ, σ

Find-Operator
x,C[([e0] e1)], ρ, σ0 ⇒de

find Cx[x], ρx, σ1

x,C[(e0 e1)], ρ, σ0 ⇒de
find Cx[x], ρx, σ1

Find-Operand
x,C[(e0 [e1])], ρ, σ0 ⇒de

find Cx[x], ρx, σ1

x,C[(e0 e1)], ρ, σ0 ⇒de
find Cx[x], ρx, σ1

Find-Body
x ̸= y (n, σ1) := fresh(σ0) x,C[λy.[e]], n :: ρ, σ1 ⇒de

find Cx[x], ρx, σ2

x,C[λy.e], ρ, σ0 ⇒de
find Cx[x], ρx, σ2

Unknown-Call
σ0(n) = ⊥ C[λx.e], ρ, σ0 ⇒de

expr C′[(e0 e1)], ρ
′, σ1 σ2 := σ1[n 7→ (C[(e0 e1)], ρ

′)]

C[λx.[e]], n :: ρ, σ0 ⇓de
call C

′[(e0 e1)], ρ
′, σ2

Known-Call
σ0(n) = (C[(e0 e1)], ρ

′)

C[λx.e], ρ, σ0 ⇒de
expr C′[(e0 e1)], ρ

′′, σ1 ρ′ ≡σ1 ρ′′ σ2 := σ1[ρ
′′/ρ′]

C[λx.[e]], n :: ρ, σ0 ⇓de
call C

′[(e0 e1)], ρ
′′, σ2

Fig. 1: Demand Evaluation



4 Tim Whiting and Kimball Germane

defined by the following rules.

ĉc1 ĉc⇔n n1, σ . . . ĉck ĉc⇔n nk, σ

⟨ĉc1, . . . , ĉck⟩ ρ̂⇔ρ ⟨n1, . . . , nk⟩, σ ⟨⟩ ĉc⇔ρ ⟨⟩, σ

C[(e0 e1)] :: ĉc ĉc⇔n n, σ

C[(e0 e1)] :: ĉc ĉc⇔ρ n :: ρ, σ

σ(n) = ⊥
?x ĉc⇔n n, σ

σ(n) = (C[(e0 e1)], ρ) ĉc ĉc⇔ρ ρ, σ

C[(e0 e1)] :: ĉc ĉc⇔n n, σ

This judgment ensures that each context in the Demand ∞-CFA environment
matches precisely with the corresponding address with respect to the store: if
the context is indeterminate, the address must not be mapped in the store;
otherwise, if the heads of the context are the same, the relation recurs.

Now it is straightforward to express the equivalence between the Demand
∞-CFA relations and Demand Evaluation.

Theorem 1 (Evaluation Equivalence). If ρ̂0 ρ̂⇔ρ ρ0, σ0 then C[e], ρ̂0 ⇓∞
eval

C ′[λx.e], ρ̂1 iff C[e], ρ0, σ0 ⇓de
eval C

′[λx.e], ρ1, σ1 where ρ̂1 ρ̂⇔ρ ρ1, σ1.

Theorem 2 (Trace Equivalence). If ρ̂0 ρ̂⇔ρ ρ0, σ0 then C[e], ρ̂0 ⇒∞
expr C ′[(e0 e1)], ρ̂1

iff C[e], ρ0, σ0 ⇒de
expr C ′[(e0 e1)], ρ1, σ1 where ρ̂1 ρ̂⇔ρ ρ1, σ1.

Theorem 3 (Caller Equivalence). If ρ̂0 ρ̂⇔ρ ρ0, σ0 then C[e], ρ̂0 ⇓∞
call C

′[(e0 e1)], ρ̂1
iff C[e], ρ0, σ0 ⇓de

call C
′[(e0 e1)], ρ1, σ1 where ρ̂1 ρ̂⇔ρ ρ1, σ1.

These theorems are proved by induction on the derivations, corresponding
instantiation of environments on the Demand ∞-CFA side with mapping an
address on the Demand Evaluation side.

2 Detailed Precision Results

Figure 2 shows the number of singleton flow sets found by Demand m-CFA
for each program individually. As can be seen, the majority of programs reach
the corresponding exhaustive m-CFA results at low effort. Notably, increasing
m doesn’t drastically increase the cost. This demonstrates that, due to its cost
model, Demand m-CFA can run at much higher levels of m than is practical in
exhaustive analyses, obtaining more precise results. On primtest, and to a lesser
degree rsa, Demand m-CFA issues queries on pieces of dead code, resulting in
additional singleton flow sets. Additionally, due to the reachability assumption
explained previously in the results section, we see precision loss in cases like blur
We plan to investigate ways to overcome these limitations in future work.



Context-Sensitive Demand-Driven Control-Flow Analysis 5

blur

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

555555555

101010101010101010

151515151515151515

eta

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

222222222

444444444

666666666

kcfa2

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

555555555

101010101010101010

151515151515151515

kcfa3

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

555555555

101010101010101010

151515151515151515

loop2-1

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

.5.5.5.5.5.5.5.5.5

111111111

1.51.51.51.51.51.51.51.51.5

222222222

mj09

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

2.52.52.52.52.52.52.52.52.5

555555555

7.57.57.57.57.57.57.57.57.5

101010101010101010

primtest

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

555555555

101010101010101010

151515151515151515

202020202020202020

252525252525252525

regex

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

252525252525252525

505050505050505050

757575757575757575

100100100100100100100100100

rsa

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

202020202020202020

404040404040404040

606060606060606060

sat

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

555555555

101010101010101010

151515151515151515

202020202020202020

252525252525252525

scheme2java

200200200200200200200200200 400400400400400400400400400 600600600600600600600600600
000000000

505050505050505050

100100100100100100100100100

150150150150150150150150150

200200200200200200200200200

Fig. 2: The number of singleton flow sets (y-axis) found by a Demand m-CFA
analysis given gas allocated per query (x-axis). Dashed lines represent the base-
line number of singleton flow sets found by an exhaustive exponential m-CFA
analysis with a 10 minute timeout. scheme2java does not have results for
m >= 2 exhaustive m-CFA due to timing out.


